مـنـتـديــات الــبـــاحـــث
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

* الكواركات - خصائها - انواعها

اذهب الى الأسفل

*  الكواركات - خصائها - انواعها Empty * الكواركات - خصائها - انواعها

مُساهمة  طارق فتحي الثلاثاء أغسطس 30, 2016 6:49 am


الكواركات
جميع الكواركات لديها رقم باريون B=\frac13. بالإضافة إلى حملها اللف النظائري الضعيف T_{3}=\pm\frac12. وتسمى الكواركات الموجبة T_{3} بمجموعة الكواركات العلوية (وهي الكواركات العلوية والساحرة والقمية)، أما الكواركات السالبة T_{3} فتسمى بمجموعة الكواركات السفلية (وهي الكواركات السفلية والغريبة والقعرية). وكل ند من مجموعة الكوارك العلوية والسفلية تنشيء معا جيل من الكواركات.
لدى الكواركات نكهات الأرقام الكمية التالية:
لف نظائري والذي لديها قيمة I_{3}=+\frac12 للكوارك العلوي وقيمة I_{3}=-\frac12 للكوارك السفلي.
الغرابة (S): عدد كمي عرفه موري جيلمان. فالكوارك الغريب يعرف بأن لديه غرابة -1.
السحر (C): ويعادل هذا العدد +1 للكوارك الساحر.
القعرية (B): عدد كمي يساوي -1 لكوارك القعر.
القمية (T): وهو عدد كمي يعادل +1 لكوارك القمة.
هذه هي أرقام الكم المفيدة لأن التفاعلات الكهرومغناطيسية والقوية تحفظها (ولكن ليس التفاعل الضعيف). أما غيرها فيمكن أن يبنى على أرقام الكم المعطاة:
شحنة مفرطة (Y): ‏Y=B+S+C+B'+T
شحنة كهربائية: Q =I_{3}+\frac12Y (انظر معادلة جيلمان-نشيجيما)
كوارك النكهة المعطاة هو قيمة ذاتية من التفاعل الضعيف الذي هو جزء من هاملتونيات: وهي تتفاعل بشكل واضح مع البوزونات W و Z.
ومن جانب آخر، يكون فرميون الكتلة الثابتة (القيمة الذاتية للحركة والتفاعل القوي هو جزء من الهاملتونيات) عادة من تراكب مختلف النكهات. ونتيجة لذلك فقد يتغير محتوى نكهة الحالة الكمية حسب انتشارها الحر. التحول من نكهة إلى قاعدة الكواركات الشاملة تكون معطاة مما يسمى مصفوفة سي كي أم (بالإنجليزية: CKM matrix). تلك المصفوفة هي نظيرة لمصفوفة أم أن اس (بالإنجليزية: MNS matrix) للكواركات، ويحدد قوام تغييرات النكهة بموجب التفاعلات الضعيفة من الكواركات.
تسمح مصفوفة سي كي ام لخرق تناظر الشحنة السوية إن كان هناك هناك ثلاثة أجيال على الأقل.

مادة كوارك في الفيزياء النووية
مادة كوارك في الفيزياء النووية، ديناميكا لونية كمومية (بالإنجليزية : Quark matter أو QCD matter) هي أي طور من عدة اطوار للمادة تعامل نظريا طبقا للميكانيكا اللونية الكمومية ويكون لها درجات حرية تحوي كواركات وجلوونات. تلك الأطوار النظرية قد تنشأ في درجات حرارة وكثافة عالية جدا، تقدر بمليار مرة أعلى مما نصل إليه في المختبرات.
في تلك الظروف الصعبة من ارتفاعل شديد لدرجة الحرارة والكثافة تتغير البناية المعهودة للمادة وتحيث تكون المكونات الرئيسية من نواة الذرة (وهي نوكليونات التي تتكون هي الأخرى من كواركات مترابطة) والإلكترونات تغيرا كبيرا. وبالنسبة إلى مادة الكوارك فمن الأسلم معالجة الكواركات كأنها أساس درجات حرية.
وفي نظرية النموذج العياري لفيزياء الجسيمات فإن أقو قوة هي التآثر القوي والتي توصف بنظرية الديناميكا اللونية الكمومية quantum chromodynamics. وعند درجات الحرارة العادية أو الكثافة العادية فإن تلك القوة تجمع الكواركات في جسيمات مركبة (الهادرونات) التي تبلغ مقاييسها نحو 10−15 متر = 1 فمتومتر = 1 fm (تعادل طاقة ΛQCD ≈ 200 مليون إلكترون فولت) ولا يظهر لها تآثير عند مسافات أكبر.
ولكن عندما ترتفع درجة الحرارة إلى حيز طاقة الميكانيكا اللونية الكمومية (T نحو 1012 كلفن,) أو ترتفع الكثافة إلى النقطة حيث تكون المسافة بين الكواركات أقل من 1 فيمتون (الجهد الكيميائي للكوارك يصل إلى 400 ميجا إلكترون فولت) فتنصهر الهادرونات إلى مكوناتها من الكواركات، ويصبح التآثر القوي هو القوة المغالبة في الفيزياء. تلك الأطوار تسمى مادة كوارك أو مادة ميكانيكا لونية كمومية.
وجودها
وجودها الطبيعي
عند نشأة الكون عندما كانت درجة الحرارة فائقة طبقا لنظرية الانفجار العظيم عندما كانت عمر الكون عدة ميكروثانية فقط، عندها اتخذ طور المادة هيئة طزر ساخن من مادة الكوارك تسمى بلازما كوارك جلوون.
الأقزام البيضاء والنجوم النيوترونية من النجوم الشديدة الكثافة. وتقل درجة حرارة النجم التيوتروني عن 1012 كلفن, ولكنه منضغط بفعل كتلته إلى كثافة قد تصل إلى كثافة مادة الكوارك في قلبه. وتتكون النجوم الفائقة الكثافة من مادة الكوارك إما كاملا أو جزئيا وتسمى نجم كواركات أو نجوم غريبة، وحتى الآن فلم يكتشف نجم له هذه الخواص.
غريبات وتلك هي بحسب الافتراض النظري كتل من مادة غريبة تحوي اعدادا متساوية من الكواركات العلوية والسفلية والكواركات الغريبة.
صدمات أشعة كونية. تحوي الأشعة الكونية أنوية ذرية ذات طاقة حركة عالية ومن ضمنها أنوية الحديد. وتوحي بعض القياسات المعملية أن تفاعلات مع غازات خاملة في طبقات الجو العليا قد ينتج عنها بلازما كوارك جلوون.
في التجارب المعملية
في تصادم الأيونات الثقيلة عند طاقات عالية تستطيع أنتاج حيوز قصيرة العمر تكون فيها الكثافة إلى قيم مقاربة لما حدث أثناء نشأة الكون عندما كان الكون عمره 20 ميكروثانية. وقد توصل الفيزيائيون إلى ذلك خلال تصادم الأيونات الثقيلة عند سرعات بالغة السرعة، وأول أعلان عن تكوين بلازما كوارك وجلوون في معجل سينكروترون بروتونات فائق الموجود في سيرن، وكان ذلك في فبراير 2000.[1].
وقد استمر اجراء تلك التجربة عند تسريع للبروتونات أكبر مثل لمصادم الأيونات الثقيلة فائقة السرعة RHIC التابع للمعمل الوطني بروكهافن في الولايات المتحدة الأمريكية ، كذلك في مصادم الهدرونات الكبير الموجود على الحدود السويسرية الفرنسية. وتوجد مؤشرات على نجاح إنتاج بلازما كوارك وجلوون في مصادم الأيونات الثقيلة فائقة السرعة.
تحديات تجريبية
من الصعب حاليا معرفة تطور الأطوار لمادة الكوارك بسبب عدم التوصل إلى توليف درجات الحرارة العالية والكثافة العالية للمادة في معمل يستخدم مصادم للأيونات الثقيلة فائقة السرعة إلى سرعات قريبة من سرعة الضوء. ولكن تلك التصادمات هي التي ستعطينا المعلومات عن التحول من مادة الهدرونات إلى مادة الكوارك. ويفكر الفيزيائيون أن رصد النجوم فائقة الكثافة ربما تكون وسيلة للتوصل غلى مهرفة تلك الأحوال الفائقة الحرارة والكثافة. وتقدم نماذج تبريد تلك النجوم، وتغير عزمها المغزلي، ودوران محورها ذاته إمكانيات للحصول على معلومات عن خصائص تلك النجوم وما في باطنها. وبتطور الرصد الفلكي وتحسن طرق القياس يأمل الفيزيائيون في الحصول على معرفة على هذا السبيل.

بلازما كوارك
بلازما كوارك-غلوونية (بالإنجليزية: quark–gluon plasma) أو حساء الكوارك (بالإنجليزية: Quark Soup)[1] هي طور في الديناميكا اللونية الكميّة يُفترض وجوده في درجة حرارة أو كثافة أو درجة حرارة وكثافة مرتفعين للغاية. ويعتقد أن هذا الطور يتألف من الكواركات والغلوونات، اللتان هما من اللبنات الأساسية للمادة، كما يعتقد أنه بعد أجزاء من الألف من الثانية بعد الانفجار العظيم، كان الكون في حالة بلازما كوارك-غلوونية.

كتلة الكوارك
يستخدم مصطلحين للإشارة إلى كتلة الكوارك: كتلة كوارك جاري وتشير إلى كتلة الكوارك ذاته، وكتلة كوارك أساسي وتشير إلى كتلة الكوارك مع كتلة مجال جسيم الغلوون المحيط بالكوارك.[61] وعادة ما يكون الاختلاف في قيم تلك الكتل كبيرا. فمعظم كتل الهادرونات تأتي من الغلوونات التي تربط الكواركات الأساسية ببعضها البعض، بدلا من الكواركات نفسها. وبما أن الغلوونات بطبيعتها تكون عديمة الكتلة، إلا أنها تمتلك طاقة أكبر—بشكل أدق طاقة ربط ديناميكا لونية كمومية (QCBE)—وهذا الذي يساهم إلى حد كبير في الكتلة الكلية للهادرون. فعلى سبيل المثال، كتلة البروتون تساوي 938 MeV/c2، من كتلة المتبقية حيث تسهم الكواركات الثلاث المكافئة بحوالي 11 MeV/c2 فقط؛ ويمكن أن يعزى الكثير من الكمية المتبقية إلى طاقة ربط الغلوونات QCBE‏.
يفيد النموذج القياسي بأن كتلة الجسيمات الأولية تستمد من آلية هيغز، ذات الصلة ببوزون هيغز الافتراضي. ويأمل الفيزيائيون بأن مزيدا من الأبحاث عن أسباب ضخامة كتلة كوارك القمة، والتي وجد أنها تعادل نواة الذهب (~171 GeV/c2)‏،[62][64] قد تكشف عن مزيد من المعلومات عن نشأة كتل الكواركات وغيرها من الجسيمات الأولية

جدول خصائص الكوارك
يلخص الجدول التالي خصائص للكواركات الست. نكهات أعداد الكم وهي: (اللف النظائري (I3)، السحر (C)، الغرابة (S)، القمة (T)، وأخيرا القعر (B‏′)) قد اسندت إلى بعض نكهات الكوارك، وللدلالة على جودة النظم القائمة على الكوارك والهادرونات. فرقم باريون (B) هو +1⁄3 لجميع الكواركات، لأن الباريون مكون من 3 كواركات. أما بالنسبة لضديد الكوارك فإن الشحنة الكهربائية (Q) وجميع نكهات أعداد الكم ("B" ،"I3" ،"C" ،"S" ،"T"، و"B‘") لديها الإشارة المعاكسة. الكتلة والزخم الزاوي الكلي ("J"؛ تساوي لف الجسيمات النقطية) لذا فإن إشارتها لا تتغير عند ضديد الكوارك.

كواركات متفاعلة
كما في وصف الديناميكا اللونية الكمومية، فإن التآثر القوي يتوسط الكواركات بواسطة الغلوونات، وبوزونات قياسية ناقلة عديمة الوزن. كل غلوون يحمل شحنة لونية واحدة وشحنة ضديد اللون. ففي إطار العمل المقياسي لتفاعلات الجسيمات (وهو جزء من صياغة عامة تعرف بنظرية الاضطراب) فإن الغلوونات تنتقل باستمرار ما بين الكواركات خلال عملية انبعاث وامتصاص افتراضية. فعندما يتحول الغلوون ما بين الكواركات، فإنه يحدث تغير باللون في كلا الطرفين، فعلى سبيل المثال: عندما يبعث الكوارك الأحمر غلوون أحمر-ضديد أخضر، فإنه سيصبح أخضر، وأيضا عندما يمتص الكوارك الأخضر غلوون أحمر-ضديد أخضر، فإنه سيصبح كوارك أحمر. لذا بما أن كل لون كوارك يتغير بسرعة فإن التآثر القوي في ما بينهم لا يتأثر.[66][67][68]
وحيث أن الغلوونات تحمل شحنة لونية، فإن لها القدرة على بعث أو امتصاص الغلوونات الأخرى. وتسبب تلك ما يسمى بالحرية المتقاربة (بالإنجليزية: Asymptotic freedom): وبما أن الكواركات تتقارب جدا من بعضها البعض فإن ذلك يضعف من قوة الربط للديناميكا اللونية بينها،[69] والعكس صحيح، فكلما تباعدت الكواركات عن بعضها فإن قوة الربط تزداد. فالمجال اللوني سيتعرض للإجهاد، اشبه بشريط مطاطي عند سحبه، فلتقوية هذا المجال ينشأ تلقائيا كمية غلوونات أكثر للألوان الملائمة. ويحدث إنتاج زوج كوارك وضديدها عند بداية حاجز الطاقة. فيتم فصل أزواج كواركات عن بعضها البعض متسببة بتشكيل هادرونات جديدة. وتعرف هذه الظاهرة باسم حجز اللون: فلا يمكن ظهور الكواركات بشكل منفرد.[67][70] تكون عملية تشكيل الهادرونات، التي تحدث قبل تشكيل الكواركات عند حالات الاصطدام عالية الطاقة، تكون قادرة على التفاعل بأي طريقة أخرى، ولكن يستثنى منها كوارك القمة، الذي يتحلل قبل أن يتهادرن.

بحر الكواركات
تحتوي الهادرونات التي تساهم مع الكوارك المكافئ (qv) في أعداد الكم على أزواج كوارك-ضديد كوارك افتراضية (qq) معروفة باسم "بحر الكواركات" (qs). ويتشكل بحر الكواركات من تصدع غلوونات مجال لون الهادرونات؛ ويمكن أن تتفاعل تلك العملية أيضا في الاتجاه المعاكس حيث أن إفناء اثنين من بحار الكواركات ينتج غلوون. فتكون النتيجة هي التدفق المستمر للغلوونات المجزأة المكونة لهذا "البحر".[72] يقل استقرار تلك البحار بكثير عن نظرائها المكافئة، وهي تفني بعضها البعض ضمن الأجزاء الداخلية للهادرون. لكن على الرغم من ذلك بإمكان بحر الكوارك أن تتهادرن إلى جزيئات باريونية أو ميزونية في ظروف معينة.

مراحل أخرى لمسألة الكوارك
تظهر بلازما الكواركات-غلوون (Quark–gluon plasma) في ظروف الحرارة القصوى؛ المرحلة الهادرونية (hadronic phase) تظهر عند درجات الحرارة الأقل وبكثافة باريونية، أما بالحالة النووية (nuclear matter) ففي الحرارة المنخفضة نسبيا وكثافة متوسطة؛ ويظهر التوصيل الفائق للون (color superconductivity) عند درجات حرارة منخفضة نوعا ما وبكثافة عالية.
تقديم نوعي للرسم التخطيطي لمادة كوارك. والتفاصيل الدقيقة للمخطط موضوع البحوث الجارية.[74][75]
تتحرر الكواركات في الظروف القصوى وتظهر كجسيمات حرة. ففي سياق التقارب الحر فإن التآثر القوي يكون ضعيفا في درجات الحرارة العالية. وبالنهاية يختفي حجز اللون وتتشكل بلازما ذات حرارة عالية من الكواركات والغلوونات حرة الحركة. وتسمى تلك المرحلة النظرية للمادة باسم بلازما كوارك-غلوون.[76] ولا يعرف ماهية الظروف اللازمة التي تؤدي إلى إنشاء تلك الحالة، وإن كان موضوعا لقدر كبير من التخمينات والتجارب. فالتقييم الحالي قدر درجة الحرارة اللازمة بحوالي 1.90±0.02×1012 كلفن.[77] لكن لم يتم الحصول على حالة كاملة من الكواركات أو الغلوونات الحرة (على الرغم من تعدد المحاولات في سيرن خلال عقد الثمانينات والتسعينات من القرن العشرين).[78] وقد أسفرت التجارب الحديثة في مصادم الأيون الثقيل النسبي RHIC عن شواهد لحالة شبيه سائل الكوارك تكشف عن حركة سوائل شبه مثالية.[79]
تتميز بلازما كوارك-غلوون بزيادة كبيرة في عدد أزواج الكواركات الثقيلة مقارنة بعدد أزواج الكواركات العلوية والسفلية. وهناك اعتقاد أنه في الفترة التي سبقت 10−6 ثوان بعد الانفجار العظيم (حقبة الكوارك) بأن الكون امتلأ من بلازما كوارك-غلوون، حيث درجات الحرارة مرتفعة جدا للهادرونات كي تستقر.[80]
نظرا للكثافة الباريونية العالية ودرجات الحرارة المنخفضة نسبيا -مقارنة مع ماهو موجود بالنجوم النيوترونية- يكتوقع أن تتحلل حالة الكوارك إلى سائل فيرمي (en)‏ لكواركات التفاعل الضعيف. ويتميز هذا السائل بواسطة تكثيف الأزواج المساهمة (en)‏ للكوارك الملون، وبالتالي يكسر التناظر الداخلي SU(3)c. وبما أن الأزواج المساهمة للكوارك تأوي شحنة اللون، ففي تلك المرحلة لحالة الكوارك سيكون لديها توصيل فائق للون؛ لذا فإن شحنة اللون ستمر خلالها بدون أي عوائق.
ملاحظات
^ إن خرق تناظرالشحنة السوية هو عبارة عن ظاهرة تجعل التفاعلات الضعيفة تظهر بشكل مختلف عند حصول التكافؤ وتغيّر موضع الجزيئات وأضدادها.
^ اعتبارًا من يوليو 2009.
^ يزعم عدد من الباحثين أنه أثبت وجود التترا كواركات والبنتا كواركات خلال السنوات الأولى من القرن الحادي والعشرين. وعلى الرغم من أن وجود التترا كواركات ما زال موضع جدل بين العلماء، إلا أن جميع الجسيمات التي كان يُعتقد بأنها تشكل بنتا كواركات ثبت عدم وجودها.
^ إن الدليل الأساسي الذي يدعم هذا القول يستند إلى عرض الصدى الخاص ببوزونات Z⁰، التي لا تسمح لنوترينو الجيل الرابع أن يستحوذ على كتلة تفوق ~45 GeV/c2. وهذا الأمر يتناقض بشدة مع نوتريونات الأجيال الثالثة الأخرى، التي لا تستطيع كتلتها أن تزيد عن 2 MeV/c2.
^ يعتبر الاحتمال الحقيقي لتحلل كوارك إلى إلى كوارك آخر مهمة معقدة (من بين المتغيرات الأخرى): تحلل كتلة الكوارك، كتل نواتج الإضمحلال، والعنصر المطابق لمصفوفة سي كي أم. تلك الاحتمالية تتناسب طرديا (لكن لا تساوي) مع مقدار مربع السي كي أم المطابقة.
^ على الرغم من التسمية، إلا أن شحنة اللون لا علاقة لها بألوان الطيف الضوء المرئي

كوارك غريب
كوارك غريب (بالإنجليزية: Strange quark) (وقد كان يطلق عليه بعض الأحيان بالسابق اسم كوارك الجانبي)[1] هو الجيل الثاني من الكوارك له شحنة أولية 3/1− وبغرابة (بالإنجليزية: strangeness) تعادل 1 −. وهو ثالث أخف كوارك بعد الكوارك العلوي والسفلي، وبكتلة ظاهرة تكون ما بين 70 إلى 130 MeV/c2. وهو جزء من الجيل الثاني للمادة، ولديه شحنة كهربائية تعادل -1⁄3 e. كما هو الحال في جميع الكواركات فإن الكوارك الغريب يعتبر فرميون أولي له لف مغزلي -1⁄2 وتفاعله مع جميع قوى الترابط الأربع: كهرومغناطيسية، جاذبية، قوي، وضعيف. ويسمى ضديده باسم ضديد الكوارك الغريب أو كوارك غريب مضاد أو ضديد الغريب، فهو يعادله بالحجم ومعاكس له بالرمز.
أول جسيم غريب (جسيم يحتوي على كوارك مكافئ غريب) تم اكتشافه سنة 1947 عندما تم التعرف على كاون، لكن الكوارك الغريب نفسه لم يتم التعرف عليه إلا سنة 1964 بواسطة فرضية موري جيلمان وجورج سويج لشرح نماذج الهادرونات وقد أطلق عليها طريق الثمان لفات، نسبة إلى الثمان لفات للسعادة القصوى في البوذية[2]. تمت ملاحظة الكوارك الغريب لأول مرة سنة 1968 في مركز SLAC.

كوارك علوي
كوارك علوي (بالإنجليزية: up quark) ورمزه (u)، أخف الكواركات وزنا، وهو جسيم أولي وأحد المكونات الرئيسية للمادة. وتشكل مع الكوارك السفلي جسيم النيوترون (واحد كوارك علوي وإثنان كوارك سفلي) والبروتون (اثنان كوارك علوي وواحد كوارك سفلي) وهما نواة الذرة. وهو جزء من الجيل الأول للمادة، ولديه شحنة كهربائية تعادل +2⁄3 e وكتلة ظاهرة 1.5–3.3 MeV/c2. كما هو الحال في جميع الكواركات فإن الكوارك العلوي يعتبر فرميون أولي له لف مغزلي -1⁄2 وتفاعله مع جميع قوى الترابط الأربع: كهرومغناطيسية, جاذبية, قوي, وضعيف. ويسمى ضديده باسم ضديد الكوارك العلوي أو كوارك علوي مضاد أو ضديد العلوي، فهو يعادله بالحجم ومعاكس له بالرمز.
كان ظهورها سنة 1964 بواسطة فرضية موري جيلمان وجورج سويج لشرح نماذج الهادرونات وقد أطلق عليها طريق الثمان لفات، نسبة إلى الثمان لفات للسعادة القصوى في البوذية[2]. تمت ملاحظة الكوارك العلوي لأول مرة سنة 1968 في مركز SLAC.
البداية
بداية فيزياء الجسيمات (في النصف الأول من القرن العشرين)، على الرغم من أن الهادرونات مثل البروتونات والنيوترونات البيون هي جسيمات أولية، لكن تم اكتشاف هادرونات جديدة فأصبحت من الكثرة أشبه بحديقة حيوان الجسيمات، فبعدما كانت عدة هدرونات في الثلاثينات والأربعينات صارت عدة عشرات في الخمسينات، وكانت الروابط فيما بينها غير واضحة حتى سنة 1961 عندما افترض كلا من موري جيلمان[3] ويوفال نعمان[4] كلا على حدة نموذج للتركيب الدقيق للهادرونات وسمي طريق الثمان لفات، أو بالمصطلح العلمي تناظر النكهة.
هذا النموذج للتركيب رتب الهادرونات حسب تعدد اللف النظائري، ولكن تبقى الأسس الفيزيائية التي وراء ذلك غير واضحة المعالم. وفي سنة 1964 اقترح كلا من جيلمان[5] وجورج سويج[6][7] (كلا على حدة) مايسمى بنموذج الكوارك، وتحتوي على كواركات علوية وسفلية وغريبة[8]. مع أن نموذج الكوارك قد شرح طريق الثمان لفات، لكن لايوجد دليل مباشر على وجود الكواركات حتى تم اكتشافها سنة 1968 في مختبر SLAC[9][10]. تجربة النثر غير المرن العميق (بالإنجليزية: Deep inelastic scattering) أشارت إلى أن البروتون له بنية داخلية فرعية، وهذا البروتون مكون من ثلاث جسيمات أساسية تشرح البيانات (وهذا يشرح نموذج الكوارك)[11].
أحجم الناس عن التعرف على الثلاث أجسام ككواركات، مفضلين تسمية ريتشارد فاينمان لها بالبارتون وكان ذلك في بداية الأمر[12][13][14]، ثم مالبث أن بدأ القبول بنظرية الكوارك[15].
الكتلة
على الرغم من كونها معروفة جدا، إلا أنه لم يتم التعرف على الكتلة الظاهرة للكوارك العلوي بشكل جيد بعد، لكنه تقديريا يقع ما بين 1.5 و3.3 MeV/c2. فعند وجودها في الميزونات (وهي جسيمات تتكون من كوارك واحد وضديد كوارك واحد) أو الباريونات (وهي جسيمات تتكون من ثلاث كواركات)، فإن الكتلة المؤثرة للكوارك ستصبح أعظم بسبب طاقة الربط المتسببة من مجال الغلوون بين الكواركات (أنظر أيضا إلى تكافؤ المادة والطاقة). فعلى سبيل المثال، تكون الكتلة المؤثرة للكوارك العلوي في البروتون حوالي 330 MeV/c2. لأن الكتلة الظاهرة له تكون خفيفة جدا، فلا يمكن حسابه بشكل مباشر لأنه يجب أن يؤخذ بالحسبان الآثار النسبية.

كوارك سفلي
كوارك سفلي (بالإنجليزية: Down quark) ورمزه (d)، ثاني أخف الكواركات وزنا، وهو جسيم أولي وأحد المكونات الرئيسية للمادة. وتشكل مع الكوارك العلوي جسيم النيوترون (واحد كوارك علوي وإثنان كوارك سفلي) والبروتون (اثنان كوارك علوي وواحد كوارك سفلي) وهما نواة الذرة. وهو جزء من الجيل الأول للمادة، ولديه شحنة كهربائية تعادل -1⁄3 e وكتلة ظاهرة 3.5–6.0 MeV/c2. كما هو الحال في جميع الكواركات فإن الكوارك السفلي يعتبر فرميون أولي له لف مغزلي -1⁄2 وتفاعله مع جميع قوى الترابط الأربع: كهرومغناطيسية, جاذبية, قوي, وضعيف. ويسمى ضديده باسم ضديد الكوارك السفلي أو كوارك سفلي مضاد أو ضديد السفلي، فهو يعادله بالحجم ومعاكس له بالرمز.
كان ظهورها سنة 1964 بواسطة فرضية موري جيلمان وجورج سويج لشرح نماذج الهادرونات وقد أطلق عليها طريق الثمان لفات، نسبة إلى الثمان لفات للسعادة القصوى في البوذية[2]. تمت ملاحظة الكوارك السفلي لأول مرة سنة 1968 في مركز SLAC.
البداية
بداية فيزياء الجسيمات (في النصف الأول من القرن العشرين)، على الرغم من أن الهادرونات مثل البروتونات والنيوترونات البيون هي جسيمات أولية، لكن تم اكتشاف هادرونات جديدة فأصبحت من الكثرة أشبه بحديقة حيوان الجسيمات، فبعدما كانت عدة هدرونات في الثلاثينات والأربعينات صارت عدة عشرات في الخمسينات، وكانت الروابط فيما بينها غير واضحة حتى سنة 1961 عندما افترض كلا من موري جيلمان[3] ويوفال نعمان[4] كلا على حدة نموذج للتركيب الدقيق للهادرونات وسمي طريق الثمان لفات، أو بالمصطلح العلمي تناظر النكهة.
هذا النموذج للتركيب رتب الهادرونات حسب تعدد اللف النظائري، ولكن تبقى الأسس الفيزيائية التي وراء ذلك غير واضحة المعالم. وفي سنة 1964 اقترح كلا من جيلمان[5] وجورج سويج[6][7] (كلا على حدة) مايسمى بنموذج الكوارك، وتحتوي على كواركات علوية وسفلية وغريبة[8]. مع أن نموذج الكوارك قد شرح طريق الثمان لفات، لكن لايوجد دليل مباشر على وجود الكواركات حتى تم اكتشافها سنة 1968 في مختبر SLAC[9][10]. تجربة النثر غير المرن العميق (بالإنجليزية: Deep inelastic scattering) أشارت إلى أن البروتون له بنية داخلية فرعية، وهذا البروتون مكون من ثلاث جسيمات أساسية تشرح البيانات (وهذا يشرح نموذج الكوارك)[11].
أحجم الناس عن التعرف على الثلاث أجسام ككواركات، مفضلين وصف ريتشارد فاينمان للبروتون وكان ذلك في بداية الأمر[12][13][14]، ثم مالبث أن بدأ القبول بنظرية الكوارك[15].

الكتلة
على الرغم من كونها معروفة جدا، إلا أنه لم يتم التعرف على الكتلة الظاهرة للكوارك السفلي بشكل جيد بعد، لكنه تقديريا يقع ما بين 3.5 و6.5 MeV/c2. فعند وجودها في الميزونات (وهي جسيمات تتكون من كوارك واحد وضديد كوارك واحد) أو الباريونات (وهي جسيمات تتكون من ثلاث كواركات)، فإن الكتلة المؤثرة للكوارك ستصبح أعظم بسبب طاقة الربط المتسببة من مجال الغلوون بين الكواركات (أنظر أيضا إلى تكافؤ المادة والطاقة). فعلى سبيل المثال، تكون الكتلة المؤثرة للكوارك السفلي في البروتون حوالي 330 MeV/c2. لأن الكتلة الظاهرة له تكون خفيفة جدا، فلا يمكن حسابه بشكل مباشر لأنه يجب أن يؤخذ بالحسبان الآثار النسبية.

بنتا كوارك
بنتا كوارك في فيزياء الجسيمات هو باريون شاذ افتراضي يحتوي على أربع كواركات وضديد كوارك واحد في حالة ترابط (مقارنة مع ثلاث كواركات في الباريون العادي). بما أن الكوارك لديه رقم باريون وهو +1⁄3، ورقم ضديد كوارك هو -1⁄3، فسيكون إجمالي رقم الباريون هو 1، لذا فهي تصنف كباريون شاذ. أول من افترض بوجود بنتا كوارك كان العالم مايكل برازالوفيتش سنة 1987[1].
أظهرت تجارب عديدة بوجود حالات البنتاكوارك أواسط العقد الأول من 2000، لكن التجارب التالية وإعادة فحص التحاليل للمعلومات أظهرت بأنها تأثيرات احصائية بدلا من أن تكون صدى حقيقي.وفي 13 يوليو 2015 أعلن مركز الأبحاث الأوروبية سيرن باكتشاف خماسي الكواركات عن طريق اضمحلال لامدا السفلية
البداية
إدعت الكثير من التجارب بأنها ظهرت لها حالات بنتاكوارك في أواسط العقد الأول من أعوام الألفين. وبشكل خاص الصدى مع كتلة ل1,540 MeV/c2 (‏4.6 σ) ذكره مختبر ليبس (LEPS) سنة 2003 Θ+.[2]، تلك المصادفة مع حالة البنتا كوارك بكتلة مقدارها 1,530 MeV/c2 تنبؤ بها سنة 1997[3].
يفترض بتلك الحالة أن تحتوي على اثنين كوارك علوي، اثنين كوارك سفلي، وواحد ضديد كوارك غريب (uudds). بعد اعلان هذا النبأ، اعلنت تسع مختبرات أنهم رأوا قمم ضيقة من nK+ وpK⁰، بكتل ما بين 1,522 MeC/c2 و1,555 MeV/c2، جميع 4 المذكورة σ‏.[2]. بينما ظهرت مخاوف حول صحة هذه الحالات، أعطت مجموعة بيانات الجسيمات معدل 3 نقاط (من أربع) ل Θ+ سنة 2004[2]. فإن حالتي بنتا كوراك الأخرىين قد تم ذكرهما وإن كانا ذات أهمية إحصائية منخفضة- فالجسيم Φ⁻⁻ ‏ (uuddc) ذو كتلة من 1,860 MeV/c2 والجسيم Θ
‏(uuddc) بكتلة مقدارها 3,099 MeV/c2. فكليهما قد تبين في وقت لاحق أنهما آثار إحصائية بدلا من صدى حقيقي[2].
عشرات التجارب كان ترنو للوصول إلى Θ+، لكن خرجت خالية الوفاض

كوارك أساسي
من ويكيبيديا، الموسوعة الحرة
الكوارك الأساسي هو كوارك جاري له غطاء.
لايمكن الوصف في الحد الأدنى من طاقة ديناميكا لونية كمومية عن طريق نظرية الاضطراب. فهنا لا وجود لحرية مقاربة، ولكن تزداد بقوة أهمية التفاعل ما بين الكوارك المكافئ وبحر الكوارك. فيعزو جزأ من تأثير الكوارك والغلوون الفعلي في هذا البحر إلى الكوارك، لذا فإن مصطلح كوارك أساسي يبدو مناسبا جدا.
يبدو وحسب مخطط فاينمان أن الكواركات الأساسية ترتدي الكواركات الجارية، بمعنى؛ أن الكواركات الجارية محاطة بغيمة من الكواركات والغلوونات الفعلية. وتلك الغيمة تفسر في نهاية المطاف الكتلة الكبيرة للكواركات الأساسية.
التعريف: الكوارك التأسيسي هو كواركات مكافئة ترتبط لرسم الهادرونات بواسطة الغلوونات وبحر الكواركات التي توضع تحت تأثير كتل الكواركات المكافئة.
تسمى كتلة الكوارك المؤثرة ب كتلة كوارك أساسي. وتحتوي الهادرونات على كواركات أساسية لاصقة. فلا يوجد اشكالية في استخدام أماكن للكواركات الأساسية الخفيفة في تصوير الهادرون.

طاقة الربط
طاقة ربط ديناميكا لونية كمومية للكوارك المكافئ في الهادرونات هي كمية الطاقة المطلوبة لجعل الهادرون يقذف بشكل عفوي ميزونا يحتوي على كوارك مكافئ. وهي نفس كتلة الكوارك الأساسي.
كوارك أساسي كتلة Δx
كوارك علوي 300 MeV/c2 0.7 fm
كوارك سفلي 300 MeV/c2 0.7 fm
كوارك غريب
كوارك ساحر
كوارك قعري
كوارك قمي
وصف الهادرونات باستخدام ميكانيكا الكم والنسبية

كوارك جاري
من ويكيبيديا، الموسوعة الحرة
الكواركات الجارية أو الكواركات المتدفقة (ويطلق عليها أيضا كواركات عارية) وتعرف بأنها لب كواركات أساسية (كوارك أساسي بدون غطاء) من الكوارك المكافئ.
فإذا كان الكوارك الأساسي، فإن الكوارك المتدفق يضرب الغطاء من الداخل بقوة عالية، فإنها تتسارع خلال التغطية وتتركها ورائها، بالإضافة إلى امتلاك الكوارك الجاري إلى حرية مقاربة خلال الحدود المعروفة لنظرية الاضطراب. وتسمى كتلة الكوارك المتدفق باسم كتلة كوارك جاري.
ليس لهذا المصطلح أي دور في وصف الهادرونات مع الكواركات الجارية الخفيفة:
كوارك جاري كتلة Δx
كوارك علوي 5–10 MeV/c2 20–40 fm
كوارك سفلي 5–10 MeV/c2 20–40 fm
كوارك غريب
كوارك ساحر
كوارك قعري
كوارك قمي
وصف ممكن فقط بمساعدة نسبية ميكانيكية الكم.

كوارك ساحر
كوارك ساحر أو فاتن (بالإنجليزية: charm quark) ورمزه (c)، ثالث أثقل الكواركات وزنا، وهو جسيم أولي وأحد المكونات الرئيسية للمادة. وقد وجد الكوارك الساحر في الهادرونات والتي هي جسيمات دون ذرية متكونة من الكوارك، ومن الهادرونات التي تحتوي على كوارك ساحر: ميزون (J/ψ) وميزون (D)، و(Σc)، وجسيمات ساحرة أخرى.
الكوارك الساحر جزء من الجيل الثاني للمادة مع كوارك غريب، ولديه شحنة كهربائية تعادل -2⁄3 e وكتلة ظاهرة 1.27
GeV/c2. كما هو الحال في جميع الكواركات فإن الكوارك الساحر يعتبر فرميون أولي له لف مغزلي -1⁄2 وتفاعله مع جميع قوى الترابط الأربع: كهرومغناطيسية, جاذبية, قوي, وضعيف. ويسمى ضديده باسم ضديد الكوارك الساحر أو كوارك ساحر مضاد أو ضديد الساحر، فهو يعادله بالحجم ومعاكس له بالرمز.
خمن بعض العلماء مثل جيمس بيوركن وشيلدون جلاشو بوجود هذا الكوارك سنة 1964[2]. لكن الذي تنبأ بها كان وجون ليوبولوس ولوسيانو مياني إضافة إلى شيلدون جلاشو سنة (1970)[3]. أول جسيم ساحر (وهو الجسيم الذي يحتوي على كوارك ساحر) تم أكتشافه هو ميزون J/ψ بواسطة فريق عمل في مختبر (SLAC) بقيادة بورتون ريختر[4] وفريق آخر في مختبر (BNL) بقيادة صمويل تينج[5] اكتشاف ميزون J/ψ -ومن ثم الكوارك الساحر- قد بشر بسلسلة من الاكتشافات والتي تعرف مايسمى بثورة نوفمبر.

الهادرونات التي تحتوي على كوارك ساحر
Crystal Clear app kdict.png مقالات مفصلة: قائمة الباريونات قائمة الميزونات
من الهادرونات التي تحتوي على على كوارك ساحر:
ميزون دي ويحتوي على كوارك ساحر (أو ضديده) وعلوي أو كوارك سفلي.
ميزون Ds يحتوي على كوارك ساحر وكوارك غريب.
يوجد العديد من حالات السحر، مثل جسيم J/ψ والتي تحتوي على كوارك ساحر وضديدها.
تم رصد باريون ساحر، وتسميته بالتناظر مع الباريونات الغريبة (أي Λ+c)
طارق فتحي
طارق فتحي
المدير العام

عدد المساهمات : 2456
تاريخ التسجيل : 19/12/2010

https://alba7th.yoo7.com

الرجوع الى أعلى الصفحة اذهب الى الأسفل

الرجوع الى أعلى الصفحة

- مواضيع مماثلة

 
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى