مـنـتـديــات الــبـــاحـــث
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

* للتصادم ما دون الذري - حاسوب كمي- المادة المضادة - الجسيمات المضادة

اذهب الى الأسفل

* للتصادم ما دون الذري - حاسوب كمي- المادة المضادة - الجسيمات المضادة Empty * للتصادم ما دون الذري - حاسوب كمي- المادة المضادة - الجسيمات المضادة

مُساهمة  طارق فتحي الإثنين مارس 14, 2016 6:33 am

يبدأ أحدث جهاز للتصادم ما دون الذري على مستوى العالم عمليات التشغيل الأولى
باختصار
من المقرر أن يتم وضع مسرع الجسيمات الياباني الفائق كيكب على خط العمل قريباً. حيث تم تصميمه لإنتاج تصادمات أكثر بـ 40 مرة عن سابقه.
أصبح مسرع الجسيمات الياباني الفائق كيكب معلماً رئيسياً، فخلال ما يُعرف باسم "التحولات الأولى"، تمكنت هذه الآلة الضخمة من إرسال شعاع من الإلكترونات و البوزيترونات  في اتجاهين متعاكسين لأول مرة  على الأطلاق. وكان كلاهما كانا يتحركان بسرعٍ مقاربةٍ لسرعة الضوء، ولكن حدث هذا في توقيتٍ مختلفٍ وليس بشكلٍ متزامن.
بعبارة أخرى. لم يتزامن الحدثان حتى الآن.
لاحظ العاملون في المختبر الوطني شمال غرب المحيط الهادئ (Pacific Northwest National Laboratory) أن إطلاق أول شعاع من البوزيترونات توزع بنجاح حول الحلقة الرئيسية للمسرع في العاشر من شباط، أما في 26 شباط توزع شعاع من الإليكترونات بنفس الطريقة ولكن بالاتجاه المعاكس.

لماذا يُعد هذا أمراً هاماً؟
حقوق الصورة: جيمس فاست/ بي بي أن أل
يأمل العلماء في الحصول على تصادم لهذه الجسيمات يوماً ما. ومن أجل الوصول لهذه النقطة، من الواضح أنه يجب على مسرع الجسيمات أن يتمكن من تعجيل الجسيمات في كلا الاتجاهين بسرعة مقاربة لسرعة الضوء قدر الإمكان.
سبّب توزيع كثافات الطاقة التي تشكلت عندما حدثت هذه التصادمات ذوبانَ المادة العادية إلى أجزاءها الرئيسية–الكواركات والغلونات. مكّننا ذلك  من التحرّي عن المكونات الأساسية للمادة –الجسيمات ما دون الذرية في نظرية النموذج القياسي. في النهاية، يمكن لهذه التجارب أن تكشف أكثر عن الفيزياء الأساسية لكوننا.
في السنوات القليلة المقبلة أو نحوها يخطط الفريق البحثي لتحويل الشعاعين معاً في نفس الوقت بحيث تصطدم الجسيمات بعضها البعض.
تم تصميم الآلة المستخدمة، وهي مسرع الجسيمات الياباني الفائق كيكب، لإنتاج تصادمات أكبر بـ 40 مرة عن سابقتها، حيث أنها سيستخدم الكاشف بيل 2 (Belle II) لرصد هذه التصادمات والذي تم تطويره بواسطة أكثر من 600 عالم من 23 بلد مختلف.
يبدو الكاشف بيل 2 يبدو وكأنه كاميرا كبيرة حقاً. حيث يستطيع تسجيل 300,000 تصادم كل ثانية، وذلك لا يعتبر عملاً سهلاً نظراً إلى أن الشعاع "الذي يتم تصويره" أساساً يبلغ سمكه 100 نانومتر فقط.
إذا نجح الفريق، فسوف يتمكنون من تحليل البيانات التي تم جمعها من المسرع، حيث تحتوي هذه البيانات على معلومات أثارت تساؤلاتنا خلال الأعوام الماضية؛ مثل لماذا هنالك وفرة من المادة، على الرغم من حقيقة أن المادة والمادة المضادة كان يجب أن تلغي احداهما الأخرى، وقد يساعدنا الحصول على بعض الإجابات على فهم كيفية نشوء الكون وكيف جئنا للوجود.
ومع هذا، قد يحتاج العلماء إلى سنوات ليأخذوا لمحة صغيرة حقيقية خلال البيانات التي سوف يوفرها المصادم، وحتى ذلك الحين سنستمر في طرح التساؤلات وإيجاد سبل للحصول على إجابات لها.
المصدر: ساينس أريت

حاسوب كميّ من خمس ذرات
مُساهمة  طارق فتحي في الأحد 13 مارس 2016 - 19:10

حاسوب كميّ من خمس ذرات يمكنه أن يفكك أي تشفير
باختصار
طور علماء من معهد ماساتشوستس للتكنولوجيا كمبيوتراً كميّاً مكوناً من خمس ذرات، يمكنه أن يجعل التشفير التقليدي قديم الطراز
كمبيوتر جديد
يقول الباحثون من معهد ماساتشوستس للتكنولوجيا أنهم طوروا أول حاسوب كمومي من خمسة ذرات في العالم، ويؤكدون أنه قادر على التغلب على طرق التشفير التقليدية الموجودة اليوم - أي من طرق التشفير الموجودة اليوم.
لتبسيط الأمر قليلاً، في الحوسبة، الأرقام عادةً ما تكون ثنائية (يمثلها 0 و 1). ولكن في الحوسبة الكمومية، هذه الوحدات معروفة باسم "الكيوبتات"، والتي هي في حالة تراكب، ويمكن أن تكون صفر وواحد في نفس الوقت. وهذا يفتح عدداً من الأبواب فيما يتعلق بالحوسبة والتشفير. هذه مجرد لمحة بسيطة للغاية، يغوص الفيديو أدناه في طريقة العمل والاستخدامات بشكل أعمق قليلاً.
ثم الآن، بسبب الطريقة التي يعمل بها الكمبيوتر، فإنه عادةً ما يستغرق حوالي 12 كيوبت لمعرفة معامل العدد 15. ما قام به الباحثون في معهد ماساتشوستس للتكنولوجيا وجامعة إنسبروك، في النمسا هو تقليص هذا العدد إلى خمسة كيوبتات، مع تمثيل كل كيوبت بذرة واحدة.
ولكن ربما أبرز ما في هذا النظام أنه سيتضمن قابلية التوسع، والسماح بإضافة المزيد من الذرات والليزر. وهذا أمر مهم، كذلك استخدام نبضات الليزر لاستقرار النظام الكميّ وإبقاء الذرات في الفخ الأيوني. باختصار، فإن قابلية التوسع ستسمح ببناء أجهزة كمبيوتر كمومية أكبر وأسرع، تلك التي يمكن أن تجد معاملات أعداد أكبر من ذلك بكثير.

صناعة الحاسوب خماسي الذرات
إنتاج هذا الكمبيوتر الكمي ذي الخمسة ذرات، أتى رداً على التحدي الذي وضعه البروفيسور بيتر شور من معهد ماساتشوستس للتكنولوجيا في عام 1994. وضع الأستاذ شور خوارزمية كمومية قادرة على حساب العوامل الأولية للأعداد الكبيرة بشكل أكثر كفاءة من أجهزة الكمبيوتر التقليدية، مع كون العدد 15 أصغر رقم لإثبات جدوى الخوارزمية.النظام الجديد كان قادراً على إعطاء العوامل الصحيحة بنسبة ثقة تزيد عن 99 في المئة.
وقال البروفسور إسحاق تشوانغ من معهد ماساتشوستس للتكنولوجيا: "نحن نثيت أن خوارزمية شور، الخوارزمية الكمومية الأكثر تعقيداً حتى الآن، قابلة للتحقيق بالطريقة التي تعني، نعم، كل ما عليك القيام به هو الذهاب إلى المختبر، وتطبيق المزيد من التكنولوجيا، لتحصل على جهاز كمبيوتر كمومي أكبر".
بالطبع، هذا قد يكون قوله أسهل قليلاً من القيام به. ويضيف تشوانغ، "ربما لا يزال يتكلف بناءه مبلغاً كبيراً من المال – لن تتمكنوا من بناء جهاز كمبيوتر كمومي ووضعه على سطح مكاتبكم في أي وقت قريب - ولكن الأمر الآن لا يتعدى كونه جهد هندسي، وليست مسألة فيزياء أساسية".
ومع ذلك، تشوانغ وفريقه متفائلون بمستقبل الحوسبة الكمومية، قائلين أنهم "يتوقعون كونها قابلة للتوسع بشكل مباشر، وبمجرد قدرة أدواتنا على حصر عدد أكبر من الذرات والمزيد من أشعة الليزر التي يمكن السيطرة على نبضاتها ... لا نرى أي سبب مادي يمنع حدوث ذلك في المستقبل ".
وقد نشرت نتائج دراستهم في دورية Nature
المصدر: بس سي وورلد

* المادة المضادة
مُساهمة  طارق فتحي في الخميس 1 أكتوبر 2015 - 20:09

في فيزياء الجسيمات، المادة المضادة هي امتداد لمفهوم الجسيم المضاد للمادة، حيث تتكون المادة المضادة من جسيمات مضادة بنفس الطريقة التي تتكون منها المادة العادية من جزيئات. على سبيل المثال، الإلكترون المضاد (البوزيترون، هو إلكترون ذو شحنة موجبة) والبروتون المضاد (بروتون ذو الشحنة سالبة) يمكن أن يشكلوا ذرة مضاد الهيدروجين بنفس الطريقة التي يشكل بها الإلكترون والبروتون ذرة هيدروجين عادية. وعلاوة على ذلك، فإن خلط المادة مع المادة المضادة يؤدي إلى فناء كل منهما وبنفس الطريقة تفنى الجسيمات والجسيمات المضادة، مما يؤدي ظهور طاقة كبيرة من الفوتونات (أشعة جاما) أو غيرها من أزواج من الجسيمات والجسيمات المضادة.
هناك تكهنات كثيرة عن السبب في أن الكون المدرك يتكون بشكل كامل تقريبا من المادة، وما إذا كان توجد غيره من الأماكن تتكون بالكامل تقريبا من المادة المضادة، وماذا قد يحدث إذا تم استغلال المادة المضادة، ولكن في هذا الوقت يشكل عدم التماثل الواضح للمادة والمادة المضادة في الكون المرئي إحدى المشاكل الكبرى التي لم تحل في الفيزياء. العملية التي تتطور من خلالها التماثل بين الجسيمات والجسيمات المضادة تسمى التخليق الباريوني (بالإنجليزية: baryogenesis).

التدوين
يوجد طريقة واحدة للدلالة على الجسيم المضاد وهي إضافة شريط (أو ماكرون) على رمز الجسيم. على سبيل المثال، البروتون والبروتون المضاد تتم كتابتهم p و,p على التوالي. وتنطبق نفس القاعدة إذا كنت تكتب الجسيمات بواسطة العناصر المكونة لها. فالبروتون يتكون من u u d كوارك، ولذلك فالبروتون المضاد يجب أن يكون يتكون من u u d كوارك مضاد. ويوجد عرف آخر وهو تمييز جزيئات بواسطة شحنتهم الكهربائية. وبالتالي، يتم الرمز للإلكترون والبوزيترون ب e− -- و+ e+ على التوازي.

النشأة وعدم التماثل
تقريبا كل شيء مدرك من الأرض يبدو أنه مكون من المادة بدلا من المادة المضادة. ويعتقد كثير من العلماء أن زيادة المادة عن المادة المضادة المعروفة باسم (عدم التماثل الباريوني) هي نتيجة لخلل في إنتاج جسيمات المادة والمادة المضادة في الكون في وقت مبكر، في عملية تسمى التخليق الباريوني. مقدار المادة التي يمكن ملاحظتها في الوقت الحاضر في هذا الكون يتطلب عدم توازن في الكون المبكر بموجب جسيم واحد من المادة مقابل مليار زوج من جسيمات المادة والمادة المضادة
يتم إنشاء المادة المضادة في كل مكان في الكون حيث تتصادم الجسيمات عالية الطاقة. الأشعة الكونية عالية الطاقة التي تؤثر في الغلاف الجوي للأرض (أو أي مادة أخرى في النظام الشمسي) تنتج كميات صغيرة من المادة المضادة ناتجة عن تدفق الجسيمات، والتي تفنى على الفور عن طريق احتكاكها بالمادة القريبة. وبالمثل فإنه قد يتم إنتاجها في مناطق مثل وسط مجرة درب التبانة ومجرات أخرى، حيث تحدث أحداث سماوية نشطة جدا (أساسا التفاعل بين التدفقات البلازما مع الوسائط بين النجوم). ووجود المادة المضادة الناتجة قابل للاكتشاف من خلال أشعة جاما التي تنتج عندما تفنى البوزيترونات مع المادة القريبة. ويشير التردد والطول الموجي لأشعة جاما إلى أن يحمل كل 511 كيلو الكترون فولت من الطاقة (أي بقية كتلة الإلكترون أو البوزيترون مضروبا في c2 2).
الملاحظات الأخيرة التي قامت بها وكالة الفضاء الأوروبية لأشعة جاما (مختبر الفيزياء الفلكية الدولي أشعة جاما) قد تفسر الأقمار الصناعية منشأ سحابة عملاقة من المادة المضادة المحيطة بمركز المجرة. الملاحظات تظهر ان السحابة غير متناظرة وتطابق نمط ثنائيات أشعة إكس، نظم النجم الثنائي وتحتوي على ثقوب سوداء أو نجوم نيوترونية، معظمها على جانب واحد من مركز المجرة. في حين أن هذه الآلية ليست مفهومة تماما، فمن المرجح أن تنطوي على إنتاج أزواج من الإلكترون والبوزيترون، والمادة العادية تحصل على طاقة هائلة أثنالء الوقوع في بقايا النجوم.[2][3]
وقد توجد المادة المضادة بكميات كبيرة نسبيا في مجرات بعيدة بسبب التضخم الكوني في الوقت البدائي للكون. وتحاول ناسا تحديد ما إذا كان هذا صحيحا بالبحث عن الأشعة السينية وأشعة جاما التي تشير الاحداث الفناء في اصطدام الكتل العظمى.

الإنتاج الصناعي
تنتج أيضا الجزيئات المضادة في أي بيئة ذات درجة حرارة عالية بما فيه الكفاية (يعني الطاقة للجسيمات أكبر من إنتاج زوج عتبة). خلال فترة التخليق الباريوني، عندما كان الكون شديد الحرارة وكثيف، كانت المادة والمادة المضادة تنتج وتباد باستمرار. وجود ما تبقى من المادة، وعدم وجود بقايا من مادة المضادة مكتشفة، [5] تسمى أيضا اللاتماثل الباريوني، يرجع إلى اختلال التماثل القطري المتعلق بالمادة والمادة المضادة. ولا تزال الآلية الدقيقة لهذا الاختلال أثناء التخليق الباريوني لغزا.
تنتج البوزترونات أيضا عن طريق بيتا المشعة + </ سوب> الاضمحلال، ولكن هذه الآلية يمكن أن تعتبر "طبيعية" وكذلك "مصطنعة".

الهيدروجين المضاد
في عام 1995 أعلنت المنظمة الأوروبية للأبحاث النووية سرن أنها نجحت في أنتاج تسع ذرات من الهيدروجين المضاد من خلال تنفيذ المكتب الإقليمي الفرعي / فيرميلاب مفهوم خلال تجربة PS210. وأجريت التجربة باستخدام حلقة البروتون المضاد ذو طاقة قليلة، وكانت بقيادة والتر أيليرت وماريو ماكري. وأكدت فيرميلاب نتائج سيرن من خلال إنتاج ما يقرب من 100 ذرة من الهيدروجين المضاد في مرافقها.
الذرات الهيدروجيم المضاد إنشاؤها أثناء PS210، والتجارب اللاحقة (في كل من سيرن وفيرميلاب) كانت نشطة للغاية ("الساخنة") ولم تكن مناسبة تماما للدراسة. لحل هذه العقبة، والتوصل إلى فهم أفضل للهيدروجين المضاد، تم تشكيل لهما التعاون في أواخر التسعينات - أثينا وATRAP. في عام 2005، حلت أثينا وبعض من أعضاء سابقين (مع آخرين) شكلت التعاون ألفا، وهي أيضا تقع في سيرن. الهدف الرئيسي لمثل هذه المنظمات هي من إنتاج هيدروجين مضاد أقل نشاطا ("بارد")، أكثر ملاءمة للدراسة.
في عام 1999 نشطت سرن مبطئ البروتون المضاد، وهو جهاز قادر على تباطؤ البروتون المضاد من 3.5 إلكترون فولت إلى 5.3 مليون إلكترون فولت، لا يزال "ساخنا" لإنتاج دراسة - الهيدروجين المضاد الفعال، ولكنها قفزة هائلة إلى الأمام.
أعلن مشروع أثينا في أواخر عام 2002 أنه قد أنشأ أول هيدرجين مضاد "بارد" في العالم. والبروتونات المضاد التي استخدمت في التجربة كانت تبرد بما فيه الكفاية بتباطؤهم (باستخدام مبطئ البروتون المضاد)، ويمر بها من خلال طبقة رقيقة من الورق، وأخيرا الاستيلاء عليهم في فخ الكتابة. ويخضع أيضا البروتون المضاد لتبريد عشوائي في عدة مراحل خلال العملية.
وكانت عملية تبريد البروتون المضاد لفريق أثينا في فعالة، ولكن لم تنجح بدرجة كبيرة. حوالي 25 مليون البروتون المضاد مغادرة التباطؤ البروتون المضاد ؛ ما يقرب من 10 ألف لجعله في فخ الكتابة.
في أوائل عام 2004 أصدر باحثون في أثينا بيانات عن طريقة جديدة لخلق الهيدروجين المضاد ذو طاقة منخفضة. والأسلوب الذي ينطوي على تباطؤ البروتون المضاد باستخدام التباطؤ البروتون المضاد، وحقنها في فخ الكتابة (الكتابة على وجه التحديد، مالمبيرغ فخ [بحاجة لمصدر] مرة المحاصرين في البروتون المضاد تمتزج الالكترونات التي تم تبريدها إلى إمكانات الطاقة أقل بكثير من البروتون المضاد ؛ الناتجة كولومب الاصطدامات تبريد البروتون المضاد الرغم من أن الاحترار الالكترونات حتى الجسيمات التوصل إلى توازن ما يقرب من 4 ك.
في حين أن البروتون المضاد يجري تبريدها في فخ الأولى، سحابة صغيرة من البلازما بوزيترون هو حقن فخ الثانية (في فخ الخلط). مثيرة للصدى في فخ الخلط بين مجالات الحبس ويمكن التحكم في درجة حرارة البلازما بوزيترون، ولكن هذا الإجراء هو الأكثر فعالية عندما البلازما هي في التوازن الحراري في فخ مع البيئة. وبوزيترون بلازما سحابة يتم إنشاؤها في المجمع بوزيترون قبل الحقن ؛ مصدر بوزيترون عادة الصوديوم المشعة.
مرة واحدة بما فيه الكفاية البروتون المضاد للتبريد، والبروتون المضاد - الإلكترون يتم نقل الخليط في فخ الخلط (الذي يحتوي على البوزيترون). وبالتالي يتم إزاله الالكترونات عن طريق سلسلة من النبضات السريعة في فخ الخلط في مجال كهربائي. عندما تصل إلى البروتون المضاد البلازما بوزيترون كولومب كذلك تحدث الاصطدامات، مما أدى إلى مزيد من التبريد من البروتون المضاد. عندما البوزيترونات والبروتون المضاد نهج التوازن الحراري ذرات الهيدروجين المضاد تبدأ بالتشكل. يجري متعادل الذرات الهيدروجين المضاد لا تتأثر بالفخ ويمكن ترك الحقول الحبس.
استخدام هذا الأسلوب، أثينا ويتوقع الباحثون أنها سوف تكون قادرة على خلق ما يصل إلى 100 ذرات الهيدروجين المضاد التنفيذية في الثانية الواحدة.
أثينا وATRAP يسعون الآن للمزيد من تبريد الذرات الهيدروجين المضاد بإخضاعها لحقل غير متجانس. بينما ذرات الهيدروجين المضاد محايدة كهربائيا، وتدور تنتج حظة المغناطيسي. هذه اللحظات المغناطيسي تختلف تبعا لاتجاه دوران للذرة، ويمكن أن تهرب من الحقول غير متجانسة بغض النظر عن شحنة كهربائية.
وأكبر عامل يحد في إنتاج المادة المضادة هو توافر البروتون المضاد. البيانات الصادرة حديثا عن سيرن تنص على أنه عندما يعمل بكامل طاقته مرافقها قادرة على إنتاج 10 7 البروتون المضاد في الثانية الواحدة. [بحاجة لمصدر] بافتراض أن التحويل الأمثل للالبروتون المضاد للالهيدروجين المضاد، ان الأمر سيستغرق سنوات ملياري لإنتاج 1 غرام أو 1 الخلد من الهيدروجين المضاد (حوالي 6.02 × 10 23 ذرة من الهيدروجين المضاد). عاملا آخر يحد من المادة المضادة للإنتاج هو التخزين. كما ذكر أعلاه لا توجد طريقة معروفة لتخزين الهيدروجين المضاد بفعالية. المشروع أثينا قد تمكنت من الحفاظ على ذرات الهيدروجين المضاد من الفناء لعشرات ثانية—ما يكفي من الوقت لدراسة لفترة وجيزة في سلوكهم.
ذرات الهيدروجين هي أبسط الأشياء التي يمكن أن تعتبر "المسألة" بدلا من أن تكون جزيئات فقط.
في وقت واحد، ومحاصرة من البروتون المضاد الهيدروجين المضاد أفيد [6] والتبريد ويتحقق ؛ [7] هناك براءات الاختراع على طريقة لإنتاج الهيدروجين المضاد.

الهيليوم المضاد
هناك عدد صغير من أنوية النظير الهيليوم المضاد، \scriptstyle{\mathrm{^3\overline{He}}} تم إنشاؤها في تجارب اصطدام.
بوزيترون
Crystal Clear app kdict.png مقالة مفصلة: بوزيترون
بوزيترون تم الإبلاغ عن [10] في نوفمبر 2008 أنه قد تم إنشاؤها بواسطة مختبر لورنس ليفرمور الوطني في أعداد أكبر من أي عملية اصطناعية سابقة. والليزر قاد المتأينة الإلكترونات من خلال دائرة نصف قطرها ملليمتر الذهب الهدف النوى، والتي تسببت في الالكترونات واردة لينبعث من كمات الطاقة، التي اضمحلت في كل من المادة والمادة المضادة. بوزيترونات تم الكشف عن بمعدل أعلى وأكبر كثافة من أي وقت سبق الكشف عنها في المختبر.
التجارب السابقة قدمت كميات أقل من بوزيترونات باستخدام أشعة الليزر، وأهداف ورقة رقيقة، ولكن المحاكاة الجديدة اظهرت ان قصيرة جدا ومكثفة ليزر ملليمتر الذهب سميكة هي مصدر أكثر فعالية بكثير.

التخزين
لا يمكن تخزين المادة المضادة في وعاء مصنوع من مادة عادية لأن المادة المضادة تتفاعل مع أي مادة تمسها، وتبيد نفسها والحاوية. تتكون المادة المضادة من جسيمات مشحونة يمكن احتواؤها من خلال مزيج من حقل كهربائي وحقل مغناطيسي في جهاز يعرف بفخ الكتابة Penning trap. وهذا الجهاز لا يمكن مع ذلك، احتواء المادة المضادة التي تتكون من جسيمات غير مشحونة، والتي تستخدم فيها الفخاخ الذرية. على وجه الخصوص، قد مثل في فخ استخدام حظة ثنائي القطب (الكهربائية أو المغناطيسية) من جسيمات المحاصرين ؛ في فراغ عالية، وهذه المسألة أو جسيمات المادة المضادة يمكن المحاصرين (تعليق) مع وتبرد قليلا خارج الإشعاع مدوية ليزر (انظر، على سبيل المثال، مغناطيسي بصري فخ وشرك المغناطيسي). الجزيئات الصغيرة يمكن أن تكون أيضا علقت فقط عن طريق الحزم الضوئية المكثفة في ملاقط بصرية.

التكلفة
تعتبر المادة المضادة أكثر المواد تكلفة في الوجود، بتكلفة تقدر ب25 مليار دولار للجرام الواحد من البوزيترون [12]، و 62.5 تريليون دولار للجرام الواحد من الهيدروجين المضاد.[13] وذلك لأن الإنتاج أمر صعب (يتم أنتاج بروتونات مضادة قليلة فقط في ردود الفعل في معجل جسيمات)، ولأن هناك زيادة في الطلب على الاستخدامات الأخرى لمسرعات الجسيمات. وفقا لسيرن، قد تكلف بضع مئات من ملايين فرنك سويسري(/0 لإنتاج حوالي 1 على مليار من الجرام) الكمية المستخدمة حتى الآن لالجسيمات / اصطدام معاكس الجسيم). {1/}
تستكشف عدة دراسات لمعهد المفاهيم المتقدمة لناسا ما إذا كان قد يكون من الممكن استخدام المجارف المغناطيسية لجمع المادة المضادة التي تتكون بشكل طبيعي في حزام فان ألن للأرض، وبعد ذلك، أحزمة من الكواكب الغازية الضخمة مثل المشتري، وتأمل في انخفاض التكلفة للجرام الواحد.
الاستخدامات
الاستخدامات طبية
لتفاعلات المادة المضادة تطبيقات عملية في التصوير الطبي، مثل انبعاث بوزيترون المقطعي. في تحلل بيتا الإيجابي، وهو فقدان فائضنويدة للشحنة الايجابية عن طريق انبعاث البوزيترون (في الحدث ذاته، يصبح البروتون نيوترون، ونيوترينويوقف أيضا). وتصنع النويدات مع فائض الشحنة الموجبة بسهولة على نطاق واسع في السيكلوترون للاستخدام الطبي.
الوقود
تؤدي اصطدامات المادة المضادة إلى انبعاث الفوتون، وتحول الكتلة الساكنة الكاملة للجسيمات إلى طاقة حركية. والطاقة لكل وحدة كتلة (9 × 10 16 جول / كلغ) هي حوالي 10 أضعاف القيمة الأسية من الطاقة الكيميائية (بالمقارنة مع مادة تي ان تي في 4.2 × 10 6 جول / كلغ، وتشكيل من المياه على 1.56 × 10 7 جول / كغم)، حوالي 4 أوامر من حجم أكبر من الطاقة النووية التي يمكن أن تتحرر اليوم باستخدام الانشطار النووي (حوالي 40 مليون إلكترون فولت لكل 238 </ سوب> يو تحويل طبيعته لنواة الرصاص، أو 1.5 × 10 13 جول / كلغ)، وحوالي 2 أوامر من حجم أكبر من أفضل ما يمكن من الاندماج (حوالي 6.3 × 10 14 جول / كغم لسلسلة بروتون بروتون). رد الفعل من 1 كغ من المادة المضادة لل1 كيلوغرام من المواد ستنتج 1.8 × 10 17 ياء (180 بالبيتاجول) الطاقة (من جانب الشامل الطاقة التعادل صيغة ه = مولودية ²)، أو ما يعادلها الخام من 43 ميجا طن من مادة تي ان تي. وعلى سبيل المقارنة، كان تفجير قنبلة قيصر بومبا، أكبر النووية تم تفجيره، بلغت قدرها المحصول المقدر 50 ميجا طن، الأمر الذي يتطلب استخدام مئات الكيلوغرامات من المواد الانشطارية (اليورانيوم / البلوتونيوم).
لا يمكن استخدام كل هه الطاقة من قبل أي تكنولوجيا الدفع واقعية، لأن ما يصل إلى 50 ٪ من الطاقة المنتجة في التفاعلات بين النيوكلونات والنوكليونات المضادة يحمله النيترينو بعيدا في هذه التطبيقات، لذلك لجميع المقاصد والأغراض، يمكن اعتبارها فقدت.[15]
أفكار الصواريخ المادة المضادة، مثل الصواريخ الطيف الأحمر، تقترح استخدام المادة المضادة كوقود للسفر بين الكواكب أو ربما السفر بين النجوم. منذ كثافة الطاقة من المادة المضادة أعلى بكثير من الوقود التقليدي، والاتجاه إلى وزن المعادلة لهذه الحرفة ستكون مختلفة جدا عن المركبة الفضائية التقليدية.
ندرة المادة المضادة يعني أنها ليست متاحة بسهولة لاستخدامها كوقود، على الرغم من أنها يمكن أن تستخدم في المادة المضادة المحفزة النووية نبض الدفع اللازمة للتطبيقات الفضائية. توليد بروتون مضاد واحد هو صعبا للغاية ويتطلب مسرعات الجسيمات، وكميات هائلة من الطاقة ملايين المرات أكثر مما هو أفرج عنه بعد ذلك هو يباد مع المسألة عادية نظرا لأوجه القصور في هذه العملية. الأساليب المعروفة لإنتاج الطاقة من المادة المضادة تنتج أيضا قدرا مساويا للمادة طبيعية، وبالتالي فإن الحد النظري هو أن نصف الطاقة مدخلات يتم تحويلها إلى المادة المضادة. موازنا هذا، عندما تقضي المادة المضادة على المادة عادية، تساوي الطاقة ضعف كتلة المادة المضادة، حتى يتم تحرير تخزين الطاقة في شكل مادة مضادة يمكن (نظريا) أن تكون فعالة بنسبة 100 ٪.
لمزيد من التطبيقات العادية (الأرضية) ولكن (مثل النقل العادي، واستخدامها في مولدات الكهرباء المحمولة، وتشغيل المدن ،...)، مصطنع المادة المضادة ليست مناسبة، ناقل للطاقة على الرغم من كثافة عالية الطاقة، وذلك لأن عملية إنشاء ينطوي على المادة المضادة كمية كبيرة من الطاقة المهدورة وغير مجدي للغاية. وفقا لسيرن، لا يمكن إلا جزءا واحدا من عشرة مليارات دولار (10 -10) من الطاقة التي تستثمر في إنتاج جزيئات المادة المضادة يمكن استردادها في وقت لاحق.[16]
المادة المضادة الإنتاج حاليا محدودة جدا، ولكن قد تزايد في معدل يقرب هندسية منذ اكتشاف البروتون المضاد الأولى في عام 1955 من قبل وسيجري تشامبرلين. [بحاجة لمصدر] معدل الإنتاج الحالي للمادة المضادة هو بين 1 و 10 نانوجرام في السنة، وهذا هو المتوقع ان ترتفع إلى ما بين 3 و 30 نانوجرام في السنة بحلول عام 2015 أو عام 2020 مع منشآت جديدة فائقة التوصيل معجل خطي في سيرن وفيرميلاب. يدعي بعض الباحثين أنه مع التكنولوجيا الحالية، فإنه من الممكن الحصول على المادة المضادة ب25 مليون $ للجرام الواحد عن طريق الاستفادة المثلى من التصادم والمعلمات جمع (نظرا الحالية تكاليف توليد الكهرباء). المادة المضادة تكاليف الإنتاج، والإنتاج الشامل، وتكاد تكون مرتبطة في خطيا مع تكاليف الكهرباء، وحتى اقتصادية خالصة المادة المضادة تطبيقات الدفع من غير المرجح ان تأتي عبر الإنترنت من دون ظهور تكنولوجيات مثل الديوتيريوم - التريتيوم الانصهار السلطة (على افتراض أن مثل هذا الواقع من شأنه أن مصدر الطاقة يثبت أن تكون رخيصة). كثير من الخبراء، مع ذلك، خلاف هذه الادعاءات بأنها مفرطين في التفاؤل من قبل العديد من الطلبات من حيث الحجم. وهم يشيرون إلى أنه في عام 2004، والإنتاج السنوي من البروتون المضاد في سيرن كان picograms عدة بتكلفة قدرها 20 مليون دولار. وهذا يعني أن ينتج 1 غرام من المادة المضادة، من شأنه أن سيرن بحاجة إلى إنفاق 100 دولار الكدريليون وتشغيل مصنع المادة المضادة لل100 مليار سنة. تخزين مشكلة أخرى، كما هي البروتون المضاد سلبا تهمة وصد ضد بعضها البعض، بحيث لا يمكن أن تتركز في حجم صغير. التذبذب البلازما في سحابة من البروتون المضاد تهمة يمكن أن يسبب عدم الاستقرار الذي البروتون المضاد طرد من فخ التخزين. لهذه الأسباب، حتى الآن سوى بضعة ملايين البروتون المضاد كان قد تم تخزينها في نفس الوقت في فخ المغناطيسي، وهو ما يعادل أقل بكثير من femtogram. الهيدروجين المضاد هي ذرات أو جزيئات محايدة من حيث المبدأ، حتى أنهم لا يعانون من مشاكل البلازما من البروتون المضاد الموصوفة أعلاه. لكن الهيدروجين المضاد البارد هو أصعب بكثير من إنتاج البروتون المضاد، وحتى الآن لم يتم صيد ذرة من الهيدروجين المضاد ذرة في مجال مغناطيسي.
قال أحد الباحثين في مختبرات سرن، التي تنتج المادة المضادة بانتظام :

* الجسيمات المضادة
مُساهمة طارق فتحي في الخميس 1 أكتوبر 2015 - 20:04

معظم أنواع الجسيمات، يوجد لها هناك جسيم مضاد (بالإنجليزية: Antiparticle) مساوي في الكتلة الساكنة والدوران المغزلي وفترة العمر لتلك الجسيمات ولكنه معاكس بالشحنة الكهربائية وإن كان مساويا لها تماما. فعلى سبيل المثال، الجسيم المضاد للإلكترون يكون مضاد الإلكترون موجب الشحنة ويسمى بوزيترون، وينتج بشكل طبيعي في حالات خاصة من الإضمحلال الإشعاعي.
قوانين الطبيعة تكون متماثلة بشكل قوي فيما يتعلق الجسيمات والجسيمات المضادة. فمثلا، عندما يتحد نقيض البروتون مع البوزيترون فإنهما يشكلان ذرة نقيض الهيدروجين، والتي تكون مشابهة تماما بالخواص لذرة الهيدروجين. فالفيزيائي الذي يكون جسمه مصنوع من مادة مضادة، ويعمل تجربة في مختبر علمي مصنوع أيضا من مادة مضادة، ويستخدم مواد كيميائية ومواد متكونة من جسيمات مضادة، فستظهر تقريبا نفس النتائج في جميع التجارب. وهذا يقود إلى السؤال وهو أنه بعد انفجار الكبير لماذا تكون الكون كله من المادة بدلا من أن يكون نصفه من المادة والنصف الآخر من مادة مضادة. عندما يلتقي جسيم مع مضاده, تحدث ظواهر شديدة العنف إذ تتحرر كمية كبيرة من الطاقة إثر هذا اللقاء, فيتفانى الجسيم ومضاده تماماً ويتحولان بالكامل إلى طاقة مما ينتج الفوتون, بما أن شحنتا الجسيم والجسيم المضاد متعاكسة، فإن الشحنة تحفظ. فمثلا، الكترونات المضادة الناتجة من تحلل اشعاعي طبيعي فإنها تتحلل بسرعة مع الإلكترونات مشكلة زوج من أشعة جاما.
الجسيمات المضادة تنتج بشكل طبيعي من تحلل بيتا، وأيضا من تفاعل للأشعة الكونية في الغلاف الجوي. وبما أن الشحنة تكون ثابتة، فإنه من غير الممكن إنتاج جسيمات مضادة إلا إذا تم تدمير الجسيم من نفس الشحنة (كما في تحلل بيتا)، أو إنتاج جسيم من شحنة مضادة. وقد تم عمل الفكرة الثانية في العديد من العمليات حيث تم إنتاج الجسيم وضديده بوقت واحد، كما هو في معجل الجسيمات. وتعتبر تلك عملية إفناء متعاكسة للجسيم-ومضاد الجسيم.
بما أن الجسيم وضديدها لهما شحنتان متعاكستان إلا أن الحيود الكهربائي للجسيم لا يستلزم أن يكون متطابقا مع ضديده. فمثلا، النيوترون مكون من الكواركات، مضاد النيوترون يتكون من مضاد الكوارك، ويمكن تمييزها عن بعضها البعض لأن النيوترون وضديده سيقضيان على بعضهما البعض عند الاتصال. هناك بعض الجسيمات (أو الدقائق بمسمى آخر) التي ليس لها شحنة كهربائية ولا باريونية ولاغيرها على الإطلاق, كالفوتون مثلا والجرافتون وهو جسيم افتراضي وأيضا الجسيم الثقيل الافتراضي الضعيف التفاعل (WIMP). وتلك تسمى (جسيمات ماجورانا), في هذه الحالة لا يوجد فرق بين الجسيم ومضاده, فيصح القول أن الفوتون المضاد مطابق للفوتون, أو بتعبير آخر فإنه في حالة الفوتون لا يمكن تمييز الجسيم من مضاده, أو أن الجسيم نفسه متناظرة, ولا حاجة لشيء آخر مناظر.

البداية التجربة
في عام 1932 وبعد أن تنبأ بول ديراك بوجود البوزيترون، اكتشف كارل أندرسون بأن اصطدامات الأشعة الكونية تنتج تلك الجسيمات داخل غرفة خاصة. فقد أظهر كاشف الجسيمات (بالإنجليزية: Particle detector) أو كاشف الإشعاع (بالإنجليزية: radiation detector) عن أثر ينحني في الاتجاه المعاكس لمسار الالكترونات ضمن الحقل المغناطيسي, ثم أمكن قياس كتلة الجسيم المضاد, وسمي (بوزيترون).
تم اكتشاف مضاد البروتون ومضاد النيوترون عن طريق اميليو سجري وأوين تشامبرلين عام 1955 بجامعة كاليفورنيا. وبعدها تم إنتاج مضاد الجسيمات للعديد من الجسيمات تحت الذرية عن طريق تجارب مسرع الجسيمات.

نظرية الثقب
Crystal Clear app kdict.png طالع أيضًا: بحر ديراك
تضمنت نتائج حل معادلة ديراك على وجود كمية من الطاقة السالبة، كنتيجة أن الإلكترون يمكنه إطلاق أشعة بشكل مستمر مما يوقعه في حالة من الطاقة السلبية. ويمكن احتمال الأسوأ وهو أن يستمر بإطلاق كمية لا متناهية من الطاقة بسبب توافر كمية غير منتهية من حالات الطاقة السلبية. ولمنع هذا الوضع غير طبيعي من الحدوث، فقد اقترح ديراك بأن هناك بحرا من الإلكترونات ذات طاقة سلبية تملأ هذا المحيط، تغطي جميع حالات الطاقة المنخفضة بحيث خلال مبدأ استبعاد باولي فلا يمكن لأي الكترون آخر أن يقع بهذا البحر. مع ذلك في بعض الأحيان، قد تنتشل إحدى الجسيمات سلبية الطاقة من بحر ديراك لتصبح جسيم موجب الطاقة. لكن عند خروجها فإنها ستترك وراءها ثقب في البحر والتي ستعمل تماما كما الكترون موجب الطاقة ولكن بشحنة معاكسة، وافترض بأنها البروتونات، وقد أطلق على ورقة عمله تلك اسم نظرية الإلكترونات والبروتونات (بالإنجليزية: A theory of electrons and protons).
كان ديراك مدركا بمشكلة أن الصورة التي عملها تتضمن على عدد غير متناه من الشحنات السالبة. وقد احتج بأن ندرك بأنها الحالة العادية للشحنة الصفرية. الصعوبة الأخرى هي الاختلاف بالكتلة ما بين الإلكترون والبروتون. وقد جادل ديراك أيضا بأن ذلك سببه التفاعلات الكهروطيسية مع البحر، حتى أثبت هيرمان ويل بأن هناك تناسق تام ما بين الشحنات الموجبة والسالبة في نظرية الثقب. وقد تنبأ ديراك بالتفاعل
e⁻+p+ → γ+γ
حيث يقضى الإلكترون والبروتون على بعضهما فينتج منهما 2 فوتون. واثبت كلا من روبرت أوبنهايمر وايغور تام بأن ذلك يجعل المادة الطبيعية تختفي بسرعة كبيرة. وبعدها بسنة، أي عام 1931، عدل ديراك من نظريته وافترض البوزيترون، وهو جسيم له نفس كتلة الإلكترون. واكتشف هذا الجسيم في السنة التالية مما أزاح آخر اعتراضين لتلك النظرية.
لكن تبقى مشكلة العدد اللانهائي من الشحنات موجودة بالمحيط. وكما نعلم أيضا أن البوزونات لديها جسيمات مضادة، ولكن بما أنهم لم يخضعوا لنظرية مبدأ استبعاد باولي، فإن نظرية الثقب لا تتوافق معهم. لذا فالتفسير الموحد للجسيمات المضادة اتاحته نظرية المجال الكمي والتي حلت كلا من المشكلتين.

إفناء جسيم-جسيم مضاد
مثال لزوج بيون الافتراضي والتي تؤثر على انتشار الكاؤون مسببة للكاون المحايد أن يحتك بضديده. وهذا مثال لإعادة تنظيم في نظرية المجال الكمي— تلك النظرية ضرورية بسبب أن عدد من الجسيمات تتغير من واحد إلى اثنان ثم تعود مجددا.
إذا كان الجسيم وضديده بحالة كمية مناسبة، فإنهما سيفنيان بعضهما مكونين جسيمات محايدة (كالفوتونات)، التفاعلات مثل
e⁻ + e+ → γ + γ (ينتج من افناء زوج الكترون-بوزيترون عدد 2 فوتون).
لذا فلا يمكن الحصول على فوتون مفرد ناتج من افناء زوج الكترون-بوزيترون
e⁻ + e+ → γ لأنه من غير الممكن المحافظة على الطاقة وكمية الحركة معا في تلك العملية, ولا يمكن أيضا اجراء عملية معاكسة لذات السبب. ولكن بنظرية المجال الكمي فإن تلك العملية مسموحة كحالة كم مرحلية لزمن قصير يكفي باستيعاب انتهاك حفظ الطاقة عن طريق مبدأ الريبة. بذلك يفتح لنا المجال لإنتاج أو افناء زوج افتراضي (أو الواقعي) بحيث حالة جسيم كمي قد تتأرجح إلى حالة جسيمين ثم تعود. تلك العمليات ضرورية في حالة الفراغ أو إعادة تنظيم لنظرية المجال الكمي. وأيضا تفتح المجال لخلط الجسيمات المحايدة خلال عمليات مثل التي بالصورة: وهو مثال معقد لما يسمى إعادة تنظيم للكتلة (mass renormalization).

خصائص الجسيمات المضادة
يمكن أن تتبادل حالة كمية لكل من الجسيم وضديده وذلك بتفعيل مشغلات تماثل الشحنة C-symmetry C، مشابه الشحنة Parity P، ومعاكس الزمن time reversal T. إذا كانت العلامات |p,σ,n> تدل على حالة الكم للجسيم n مع العزم p، الدوران المغزلي J ويكون عنصره بالإتجاه-z هو σ فإن أحداهما يكون:
CPT \ |p,\sigma,n>\ =\ (-1)^{J-\sigma}\ |p,-\sigma,n^c>,
حيث:nc يرمز إلى حالة تماثل الشحنة. أي أن الجسيم المضاد الذي يتصرف تحت CPT (مماثل الشحنة ومشابه الشحنة ومعاكس الزمن) يكون بنفس حالة الجسيم ويقع ضديده تحت نفس النموذج المبسط لمجموعة بيونكير (Poincare group). فقد تكون خصائص الجسيمات المضادة متصلة بالجسيم خلالها. إن كان T بحالة تماثل ديناميكي جيد، فالنتيجة هي:
T\ |p,\sigma,n>\ \propto \ |-p,-\sigma,n>,
CP\ |p,\sigma,n>\ \propto \ |-p,\sigma,n^c>,
C\ |p,\sigma,n>\ \propto \ |p,\sigma,n^c>,
حيث علامة التناسب تشير إلى أنه قد يكون هناك طور على جهة اليمين. وبمعنى آخر فإن الجسيم وضديده يجب أن يكون:
نفس الكتلة m
نفس حالة الدوران المغزلي J
متعاكس بالشحنة الكهربائية q و-q.

نظرية المجال الكمي
يعتمد هذا الفصل على أفكار ولغة وترميز قانونية تجزئة الكم (canonical quantization) لنظرية المجال الكمي.
قد يحاول المرء تقسيم مجال الإلكترون بدون أن يخلط عوامل الإفناء مع الإنشاء من خلال كتابة
\psi (x)=\sum_{k}u_k (x)a_k e^{-iE(k)t},\,
فعندما يستخدم الرمز k للإشارة إلى أعداد الكم p وσ تم ذكره في المقطع السابق ورمز الطاقة, (E(k, وak ترمز إلى عوامل الإفناء المتشابهة. وبما أننا نتعامل مع الفرميونات، فيجب أن يكون لدينا علاقة مضادة التبادل مرضية قانونيا. ولكن إن كتب قانون هاملتون كالتالي
H=\sum_{k} E(k) a^\dagger_k a_k,\,
فإنه سوف يُرى أن القيمة المتوقعة ل H يجب أن لا تكون موجبة. وهذا بسبب أنه بإمكان (E(k أن يكون لها أي علامة أيا كانت، وهذا المزيج من عاملي الإنشاء والإفناء له قيمة متوقعة وهي: 1 أو 0.
لذا يجب إدخال شحنة متماثلة في مجال الجسيم المضاد مع عواملها للإفناء والتكوين لتحقيق تلك الروابط
b_{k\prime} = a^\dagger_k\ \mathrm{and}\ b^\dagger_{k\prime}=a_k,\,
حيث k مساوية ل p، ومعاكسة في σ وعلامة الطاقة. وعندها سيتم اعادة كتابة المجال بالصيغة التالية:
\psi(x)=\sum_{k_+} u_k (x)a_k e^{-iE(k)t}+\sum_{k_-} u_k (x)b^\dagger _k e^{-iE(k)t},\,
حيث المجموع الأول سيكون حالة طاقة موجبة والمحصلة الثانية هي حالة طاقة سلبية. وستكون الطاقة كالتالي:
H=\sum_{k_+} E_k a^\dagger _k a_k + \sum_{k_-} |E(k)|b^\dagger_k b_k + E_0,\,
حيث E0 هي ثابت سلبي لانهائي. وتعرف حالة الفراغ بأنها الحالة التي لايوجد بها جسيمات ولا أضدادها، أي a_k |0\rangle=0 وb_k |0\rangle=0. عندها تكون طاقة الفراغ تساوي بالضبط E0. حيث أن قياس جميع الطاقات مرتبطة بالفراغ، فإن H هو موجب محدد. بتحليل خصائص كل من ak وbk يظهر بأن أحدهما هو عامل افناء للجسيم والآخر للجسيم المضاد. وتلك هي حالة الفرميون.
هذا المنهج عمله كل من فلاديمير فوك وونديل فوري وروبرت ابنهايمر. إذا تم تجزئة الكم بمجال سلّمي حقيقي، فسيكون هناك نوع واحد لعامل الإفناء، لذا فمجال التدرج الحقيقي يصف البوزون المحايد. حيث أن مجالات التدرج المعقدة تتسع لنوعين مختلفين من عوامل الإفناء، والتي تتصل ببعضها عن طريق الاقتران، وتلك المجالات تصف البوزونات المشحونة.

تفسير فينمان-ستوكلبيرغ
مع الأخذ بعين الاعتبار ان صيغ انتشار الطاقة السالبة للمجال الإلكتروني تكون عكسية مع الزمن، فقد توصل ارنست ستوكلبيرغ إلى تصور حي للحقيقة القائلة بأن الجسيمات وأضدادها لها نفس الكتلة m والدوران المغزلي J ولكن متعاكسة بالشحنة q. مما سمح له بإعادة كتابة نظرية الاضطراب بدقة على شكل رسوم بيانية. وقدم بعدها ريتشارد فاينمان استنتاج منهجي مستقل لتلك الرسوم البيانية من شكليات الجسيم وسميت بمخطط فاينمان. كل خط من الخطوط البيانية تمثل انتشار الجسيم سواء طردي أو عكسي مع الزمن. وتلك التقنية هي طريقة واسعة الانتشار في الوقت الحالي لاحتساب السعة في نظرية المجال الكمي.
وبما أن التصور قد طوره ارنست ستوكلبيرغ واكتسب صيغته المحدثة بمجهودات فيمان، لذا فقد سمي بتفسير فينمان-ستوكلبيرغ للجسيمات المضادة تكريما لكلا العالمين.
طارق فتحي
طارق فتحي
المدير العام

عدد المساهمات : 2456
تاريخ التسجيل : 19/12/2010

https://alba7th.yoo7.com

الرجوع الى أعلى الصفحة اذهب الى الأسفل

الرجوع الى أعلى الصفحة

- مواضيع مماثلة

 
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى